
Accessing Public High-throughput Data Using R and
Bioconductor

Sean Davis∗and Jack Zhu

August 12, 2011

Genetics Branch
National Cancer Institute

National Institutes of Health

Contents

1 Overview of the NCBI Gene Expression Omnibus (GEO) 2
1.1 Platforms . 3
1.2 Samples . 3
1.3 Series . 3
1.4 Datasets . 3

2 Using GEOquery to Access NCBI GEO 3
2.1 GEOquery Data Structures . 4

2.1.1 The GDS, GSM, and GPL classes . 4
2.1.2 The GSE class . 8

2.2 Converting to BioConductor ExpressionSets and limma MALists 10
2.2.1 Getting GSE Series Matrix files as an ExpressionSet 10
2.2.2 Converting GDS to an ExpressionSet 11
2.2.3 Converting GDS to an MAList . 13
2.2.4 Converting GSE to an ExpressionSet 18

2.3 Accessing Raw Data from GEO . 24
2.4 Use Cases . 25

2.4.1 Getting all Series Records for a Given Platform 25
2.4.2 Building a Selective NCBI GEO mirror 26

2.5 GEOquery Summary . 26

∗sdavis2@mail.nih.gov

1

3 The GEOmetadb Package 26
3.1 Introduction . 26

3.1.1 What is GEOmetadb? . 27
3.1.2 Conversion capabilities . 28
3.1.3 What GEOmetadb is not . 28

3.2 Getting Started . 28
3.2.1 Getting the GEOmetadb database . 28
3.2.2 A word about SQL . 30

3.3 Examples . 30
3.3.1 Interacting with the database . 30
3.3.2 Writing SQL queries and getting results 31
3.3.3 Conversion of GEO entity types . 35
3.3.4 Mappings between GPL and Bioconductor microarry annotation pack-

ages . 36
3.3.5 More advanced queries . 36

4 Introduction to SRA and the SRAdb Package 37
4.1 Preliminaries . 38
4.2 Using the SRAdb package . 39

4.2.1 Interacting with the database . 39
4.2.2 Writing SQL queries and getting results 41
4.2.3 Finding Relationships Between SRA Entities 42
4.2.4 Full text search . 43
4.2.5 Get SRA or SRA-lite Data File Information 44

4.3 Interactive Views of Sequence Data . 45
4.4 Graphical View of SRA Entity Relationships 46

5 sessionInfo 48

1 Overview of the NCBI Gene Expression Omnibus

(GEO)

The NCBI Gene Expression Omnibus (GEO) serves as a public repository for a wide range of
high-throughput experimental data. These data include single and dual channel microarray-
based experiments measuring mRNA, genomic DNA, and protein abundance, as well as
non-array techniques such as serial analysis of gene expression (SAGE), mass spectrometry
proteomic data, and high-throughput sequencing data.

At the most basic level of organization of GEO, there are four basic entity types. The
first three (Sample, Platform, and Series) are supplied by users; the fourth, the dataset, is
compiled and curated by GEO staff from the user-submitted data.1

1See http://www.ncbi.nih.gov/geo for more information

2

http://www.ncbi.nih.gov/geo

1.1 Platforms

A Platform record describes the list of elements on the array (e.g., cDNAs, oligonucleotide
probesets, ORFs, antibodies) or the list of elements that may be detected and quantified
in that experiment (e.g., SAGE tags, peptides). Each Platform record is assigned a unique
and stable GEO accession number (GPLxxx). A Platform may reference many Samples that
have been submitted by multiple submitters.

1.2 Samples

A Sample record describes the conditions under which an individual Sample was handled, the
manipulations it underwent, and the abundance measurement of each element derived from
it. Each Sample record is assigned a unique and stable GEO accession number (GSMxxx).
A Sample entity must reference only one Platform and may be included in multiple Series.

1.3 Series

A Series record defines a set of related Samples considered to be part of a group, how the
Samples are related, and if and how they are ordered. A Series provides a focal point and
description of the experiment as a whole. Series records may also contain tables describing
extracted data, summary conclusions, or analyses. Each Series record is assigned a unique
and stable GEO accession number (GSExxx). Series records are available in a couple of
formats which are handled by GEOquery independently. The smaller and new GSEMatrix
files are quite fast to parse; a simple flag is used by GEOquery to choose to use GSEMatrix
files (see below).

1.4 Datasets

GEO DataSets (GDSxxx) are curated sets of GEO Sample data. A GDS record represents
a collection of biologically and statistically comparable GEO Samples and forms the basis
of GEO’s suite of data display and analysis tools. Samples within a GDS refer to the same
Platform, that is, they share a common set of probe elements. Value measurements for
each Sample within a GDS are assumed to be calculated in an equivalent manner, that is,
considerations such as background processing and normalization are consistent across the
dataset. Information reflecting experimental design is provided through GDS subsets.

2 Using GEOquery to Access NCBI GEO

Getting data from GEO is really quite easy. There is only one command that is needed,
getGEO. This one function interprets its input to determine how to get the data from GEO
and then parse the data into useful R data structures. See the Bioconductor website for how
to install GEOquery. Assuming that the installation was successful, usage is quite simple:

3

> library(GEOquery)

This loads the GEOquery library.

> # If you have network access, the more typical way to do this

> # would be to use this:

> # gds <- getGEO("GDS507")

> gds <- getGEO(filename=system.file("extdata/GDS507.soft.gz",package="GEOquery"))

Now, gds contains the R data structure (of class GDS) that represents the GDS507 en-
try from GEO. If you like, you can visit the url http://www.ncbi.nlm.nih.gov/sites/
GDSbrowser?acc=GDS507 to see the webpage for this GDS entry. You’ll note that the file-
name used to store the download was output to the screen (but not saved anywhere) for
later use to a call to getGEO(filename=. . .).

We can do the same with any other GEO accession, such as GSM3, a GEO sample.

> # If you have network access, the more typical way to do this

> # would be to use this:

> # gds <- getGEO("GSM11805")

> gsm <- getGEO(filename=system.file("extdata/GSM11805.txt.gz",package="GEOquery"))

2.1 GEOquery Data Structures

The GEOquery data structures really come in two forms. The first, comprising GDS , GPL,
and GSM all behave similarly and accessors have similar effects on each. The fourth GEO-
query data structure, GSE is a composite data type made up of a combination of GSM and
GPL objects. I will explain the first three together first.

2.1.1 The GDS, GSM, and GPL classes

Each of these classes is comprised of a metadata header (taken nearly verbatim from the
SOFT format header) and a GEODataTable. The GEODataTable has two simple parts, a
Columns part which describes the column headers on the Table part. There is also a show
method for each class. For example, using the gsm from above:

> # Look at gsm metadata:

> Meta(gsm)

$channel_count

[1] "1"

$comment

[1] "Raw data provided as supplementary file"

4

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS507
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS507

$contact_address

[1] "715 Albany Street, E613B"

$contact_city

[1] "Boston"

$contact_country

[1] "USA"

$contact_department

[1] "Genetics and Genomics"

$contact_email

[1] "mlenburg@bu.edu"

$contact_fax

[1] "617-414-1646"

$contact_institute

[1] "Boston University School of Medicine"

$contact_name

[1] "Marc,E.,Lenburg"

$contact_phone

[1] "617-414-1375"

$contact_state

[1] "MA"

$contact_web_link

[1] "http://gg.bu.edu"

$`contact_zip/postal_code`
[1] "02130"

$data_row_count

[1] "22283"

$description

[1] "Age = 70; Gender = Female; Right Kidney; Adjacent Tumor Type = clear cell; Adjacent Tumor Fuhrman Grade = 3; Adjacent Tumor Capsule Penetration = true; Adjacent Tumor Perinephric Fat Invasion = true; Adjacent Tumor Renal Sinus Invasion = false; Adjacent Tumor Renal Vein Invasion = true; Scaling Target = 500; Scaling Factor = 7.09; Raw Q = 2.39; Noise = 2.60; Background = 55.24."

[2] "Keywords = kidney"

5

[3] "Keywords = renal"

[4] "Keywords = RCC"

[5] "Keywords = carcinoma"

[6] "Keywords = cancer"

[7] "Lot batch = 2004638"

$geo_accession

[1] "GSM11805"

$last_update_date

[1] "May 28 2005"

$molecule_ch1

[1] "total RNA"

$organism_ch1

[1] "Homo sapiens"

$platform_id

[1] "GPL96"

$series_id

[1] "GSE781"

$source_name_ch1

[1] "Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma"

$status

[1] "Public on Nov 25 2003"

$submission_date

[1] "Oct 20 2003"

$supplementary_file

[1] "ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSM11nnn/GSM11805/GSM11805.CEL.gz"

$title

[1] "N035 Normal Human Kidney U133A"

$type

[1] "RNA"

6

There is a lot of useful information in the Metadata section of a GSM , GDS , or GPL
object. The Meta method returns a list, so one can pull out relevant information as needed.
Note that the GEOmetadb that we will discuss next has parsed all of these sections into a
SQLite database, so searching based on metadata becomes straightforward.

> # Look at data associated with the GSM:

> # but restrict to only first 5 rows, for brevity

> Table(gsm)[1:5,]

ID_REF VALUE ABS_CALL

1 AFFX-BioB-5_at 953.9 P

2 AFFX-BioB-M_at 2982.8 P

3 AFFX-BioB-3_at 1657.9 P

4 AFFX-BioC-5_at 2652.7 P

5 AFFX-BioC-3_at 2019.5 P

The Table method returns a data.frame, typically. It contains the data values for the
GEO entity.

> # Look at Column descriptions:

> Columns(gsm)

Column

1 ID_REF

2 VALUE

3 ABS_CALL

Description

1

2 MAS 5.0 Statistical Algorithm (mean scaled to 500)

3 MAS 5.0 Absent, Marginal, Present call with Alpha1 = 0.05, Alpha2 = 0.065

The columns present in the GEOdataTable class object are described in some detail.
The GPL behaves exactly as the GSM class. However, the GDS has a bit more informa-

tion associated with the Columns method:

> Columns(gds)

sample disease.state individual

1 GSM11815 RCC 035

2 GSM11832 RCC 023

3 GSM12069 RCC 001

4 GSM12083 RCC 005

5 GSM12101 RCC 011

6 GSM12106 RCC 032

7

7 GSM12274 RCC 2

8 GSM12299 RCC 3

9 GSM12412 RCC 4

10 GSM11810 normal 035

11 GSM11827 normal 023

12 GSM12078 normal 001

13 GSM12099 normal 005

14 GSM12269 normal 1

15 GSM12287 normal 2

16 GSM12301 normal 3

17 GSM12448 normal 4

description

1 Value for GSM11815: C035 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

2 Value for GSM11832: C023 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

3 Value for GSM12069: C001 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

4 Value for GSM12083: C005 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

5 Value for GSM12101: C011 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

6 Value for GSM12106: C032 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

7 Value for GSM12274: C2 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

8 Value for GSM12299: C3 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

9 Value for GSM12412: C4 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

10 Value for GSM11810: N035 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

11 Value for GSM11827: N023 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

12 Value for GSM12078: N001 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

13 Value for GSM12099: N005 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

14 Value for GSM12269: N1 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

15 Value for GSM12287: N2 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

16 Value for GSM12301: N3 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

17 Value for GSM12448: N4 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

2.1.2 The GSE class

The GSE is the most confusing of the GEO entities. A GSE entry can represent an arbitrary
number of samples run on an arbitrary number of platforms. The GSE has a metadata
section, just like the other classes. However, it doesn’t have a GEODataTable. Instead, it
contains two lists, accessible using GPLList and GSMList, that are each lists of GPL and
GSM objects. To show an example:

> # Again, with good network access, one would do:

> # gse <- getGEO("GSE781",GSEMatrix=FALSE)

> gse <- getGEO(filename=system.file("extdata/GSE781_family.soft.gz",package="GEOquery"))

Parsing....

8

> head(Meta(gse))

$contact_address

[1] "715 Albany Street, E613B"

$contact_city

[1] "Boston"

$contact_country

[1] "USA"

$contact_department

[1] "Genetics and Genomics"

$contact_email

[1] "mlenburg@bu.edu"

$contact_fax

[1] "617-414-1646"

> # names of all the GSM objects contained in the GSE

> names(GSMList(gse))

[1] "GSM11805" "GSM11810" "GSM11814" "GSM11815" "GSM11823" "GSM11827"

[7] "GSM11830" "GSM11832" "GSM12067" "GSM12069" "GSM12075" "GSM12078"

[13] "GSM12079" "GSM12083" "GSM12098" "GSM12099" "GSM12100" "GSM12101"

[19] "GSM12105" "GSM12106" "GSM12268" "GSM12269" "GSM12270" "GSM12274"

[25] "GSM12283" "GSM12287" "GSM12298" "GSM12299" "GSM12300" "GSM12301"

[31] "GSM12399" "GSM12412" "GSM12444" "GSM12448"

> # and get the first GSM object on the list

> class(GSMList(gse)[[1]])

[1] "GSM"

attr(,"package")

[1] "GEOquery"

> head(Meta(GSMList(gse)[[1]]))

$channel_count

[1] "1"

$comment

[1] "Raw data provided as supplementary file"

9

$contact_address

[1] "715 Albany Street, E613B"

$contact_city

[1] "Boston"

$contact_country

[1] "USA"

$contact_department

[1] "Genetics and Genomics"

> # and the names of the GPLs represented

> names(GPLList(gse))

[1] "GPL96" "GPL97"

See below for an additional, preferred method of obtaining GSE information.

2.2 Converting to BioConductor ExpressionSets and limma MAL-
ists

GEO datasets are, unlike some of the other GEO entities, quite similar to the limma data
structure MAList and to the Biobase data structure ExpressionSet . Therefore, there are
two functions, GDS2MA and GDS2eSet that convert GDS data structures to limma or Biobase
data structures.

2.2.1 Getting GSE Series Matrix files as an ExpressionSet

GEO Series are collections of related experiments. In addition to being available as SOFT
format files, which are quite large, NCBI GEO has prepared a simpler format file based on
tab-delimited text. The getGEO function can handle this format and will parse very large
GSEs quite quickly. The data structure returned from this parsing is a list of ExpressionSets.
As an example, we download and parse GSE2553.

> # Note that GSEMatrix=TRUE is the default

> gse2553 <- getGEO('GSE2553',GSEMatrix=TRUE)
> show(gse2553)

$GSE2553_series_matrix.txt.gz

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12600 features, 181 samples

element names: exprs

10

protocolData: none

phenoData

sampleNames: GSM48681 GSM48682 ... GSM48861 (181 total)

varLabels: title geo_accession ... data_row_count (30 total)

varMetadata: labelDescription

featureData

featureNames: 1 2 ... 12600 (12600 total)

fvarLabels: ID PenAt ... Chimeric_Cluster_IDs (13 total)

fvarMetadata: Column Description labelDescription

experimentData: use 'experimentData(object)'
Annotation: GPL1977

> show(pData(phenoData(gse2553[[1]]))[1:5,c(1,6,8)])

title type

GSM48681 Patient sample ST18, Dermatofibrosarcoma RNA

GSM48682 Patient sample ST410, Ewing Sarcoma RNA

GSM48683 Patient sample ST130, Sarcoma, NOS RNA

GSM48684 Patient sample ST293, Malignant Peripheral Nerve Sheath Tumor RNA

GSM48685 Patient sample ST367, Liposarcoma RNA

source_name_ch1

GSM48681 Dermatofibrosarcoma

GSM48682 Ewing Sarcoma

GSM48683 Sarcoma, NOS

GSM48684 Malignant Peripheral Nerve Sheath Tumor

GSM48685 Liposarcoma

2.2.2 Converting GDS to an ExpressionSet

Taking our gds object from above, we can simply do:

> eset <- GDS2eSet(gds,do.log2=TRUE)

Now, eset is an ExpressionSet that contains the same information as in the GEO dataset,
including the sample information, which we can see here:

> eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 22645 features, 17 samples

element names: exprs

protocolData: none

phenoData

sampleNames: GSM11815 GSM11832 ... GSM12448 (17 total)

11

varLabels: sample disease.state individual description

varMetadata: labelDescription

featureData

featureNames: 200000_s_at 200001_at ... AFFX-TrpnX-M_at (22645 total)

fvarLabels: ID Gene.title ... GO.Component.1 (21 total)

fvarMetadata: Column labelDescription

experimentData: use 'experimentData(object)'
pubMedIds: 14641932

Annotation:

> pData(eset)

sample disease.state individual

GSM11815 GSM11815 RCC 035

GSM11832 GSM11832 RCC 023

GSM12069 GSM12069 RCC 001

GSM12083 GSM12083 RCC 005

GSM12101 GSM12101 RCC 011

GSM12106 GSM12106 RCC 032

GSM12274 GSM12274 RCC 2

GSM12299 GSM12299 RCC 3

GSM12412 GSM12412 RCC 4

GSM11810 GSM11810 normal 035

GSM11827 GSM11827 normal 023

GSM12078 GSM12078 normal 001

GSM12099 GSM12099 normal 005

GSM12269 GSM12269 normal 1

GSM12287 GSM12287 normal 2

GSM12301 GSM12301 normal 3

GSM12448 GSM12448 normal 4

description

GSM11815 Value for GSM11815: C035 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM11832 Value for GSM11832: C023 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12069 Value for GSM12069: C001 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12083 Value for GSM12083: C005 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12101 Value for GSM12101: C011 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12106 Value for GSM12106: C032 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12274 Value for GSM12274: C2 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12299 Value for GSM12299: C3 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM12412 Value for GSM12412: C4 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

GSM11810 Value for GSM11810: N035 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

GSM11827 Value for GSM11827: N023 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

GSM12078 Value for GSM12078: N001 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

12

GSM12099 Value for GSM12099: N005 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

GSM12269 Value for GSM12269: N1 Normal Human Kidney U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

GSM12287 Value for GSM12287: N2 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

GSM12301 Value for GSM12301: N3 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

GSM12448 Value for GSM12448: N4 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma

2.2.3 Converting GDS to an MAList

No annotation information (called platform information by GEO) was retrieved from because
ExpressionSet does not contain slots for gene information, typically. However, it is easy to
obtain this information. First, we need to know what platform this GDS used. Then, another
call to getGEO will get us what we need.

> #get the platform from the GDS metadata

> Meta(gds)$platform

[1] "GPL97"

> #So use this information in a call to getGEO

> gpl <- getGEO(filename=system.file("extdata/GPL97.annot.gz",package="GEOquery"))

So, gpl now contains the information for GPL97 from GEO. Unlike ExpressionSet , the
limma MAList does store gene annotation information, so we can use our newly created gpl

of class GPL in a call to GDS2MA like so:

> MA <- GDS2MA(gds,GPL=gpl)

> MA

An object of class "MAList"

$M

GSM11815 GSM11832 GSM12069 GSM12083 GSM12101 GSM12106 GSM12274 GSM12299

[1,] 4254.0 5298.2 4026.5 3498.4 3566.4 4903.1 6372.6 4829.1

[2,] 17996.2 12010.7 10283.5 2534.7 11048.4 13354.0 8563.8 17247.6

[3,] 41678.8 39116.9 38758.9 32847.7 39633.9 43511.2 46856.7 47032.4

[4,] 65390.9 34806.2 31257.2 28308.5 67447.5 56989.9 57972.5 57570.5

[5,] 19030.1 15813.6 16355.7 9579.7 14273.5 17217.0 19116.9 17487.6

GSM12412 GSM11810 GSM11827 GSM12078 GSM12099 GSM12269 GSM12287 GSM12301

[1,] 5205.8 2756.8 3932.0 3729.9 3223.4 3640.5 4886.3 4070.2

[2,] 16018.5 6077.0 15703.8 10138.5 11614.4 8460.5 10282.6 11844.3

[3,] 22152.2 26660.7 26373.6 23809.6 24749.3 21936.8 31462.8 22733.7

[4,] 29062.2 35140.9 23629.3 22100.5 21651.0 18550.7 23496.5 21315.4

[5,] 14671.6 17733.1 18022.4 17957.4 15958.0 15799.8 16685.8 18817.3

GSM12448

[1,] 3482.1

13

[2,] 9741.6

[3,] 25395.5

[4,] 28631.4

[5,] 17421.1

22640 more rows ...

$A

NULL

$targets

sample disease.state individual

1 GSM11815 RCC 035

2 GSM11832 RCC 023

3 GSM12069 RCC 001

4 GSM12083 RCC 005

5 GSM12101 RCC 011

description

1 Value for GSM11815: C035 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

2 Value for GSM11832: C023 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

3 Value for GSM12069: C001 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

4 Value for GSM12083: C005 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

5 Value for GSM12101: C011 Renal Clear Cell Carcinoma U133B; src: Trizol isolation of total RNA from Renal Clear Cell Carcinoma tissue

12 more rows ...

$genes

ID Gene.title

1 200000_s_at PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae)

2 200001_at calpain, small subunit 1

3 200002_at ribosomal protein L35

4 200003_s_at ribosomal protein L28

5 200004_at eukaryotic translation initiation factor 4 gamma, 2

Gene.symbol Gene.ID UniGene.title UniGene.symbol UniGene.ID

1 PRPF8 10594

2 CAPNS1 826

3 RPL35 11224

4 RPL28 6158

5 EIF4G2 1982

Nucleotide.Title

1 Homo sapiens PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae) (PRPF8), mRNA

2 Homo sapiens calpain, small subunit 1 (CAPNS1), transcript variant 1, mRNA

3 Homo sapiens ribosomal protein L35 (RPL35), mRNA

4 Homo sapiens ribosomal protein L28 (RPL28), mRNA

14

5 Homo sapiens eukaryotic translation initiation factor 4 gamma, 2 (EIF4G2), transcript variant 1, mRNA

GI GenBank.Accession Platform_CLONEID Platform_ORF Platform_SPOTID

1 91208425 NM_006445 <NA> <NA> <NA>

2 51599152 NM_001749 <NA> <NA> <NA>

3 78190471 NM_007209 <NA> <NA> <NA>

4 34486095 NM_000991 <NA> <NA> <NA>

5 111494227 NM_001418 <NA> <NA> <NA>

Chromosome.location

1 17p13.3

2 19q13.12

3 9q34.1

4 19q13.4

5 11p15

Chromosome.annotation

1 Chromosome 17, NC_000017.9 (1500673..1534926, complement)

2 Chromosome 19, NC_000019.8 (41322758..41333095)

3 Chromosome 9, NC_000009.10 (126659979..126664061, complement)

4 Chromosome 19, NC_000019.8 (60589112..60595265)

5 Chromosome 11, NC_000011.8 (10775169..10787158, complement)

GO.Function

1 RNA binding///RNA splicing factor activity, transesterification mechanism///protein binding

2 calcium ion binding///calcium-dependent cysteine-type endopeptidase activity///protein binding

3 mRNA binding///protein binding///structural constituent of ribosome

4 RNA binding///protein binding///structural constituent of ribosome///structural constituent of ribosome

5 protein binding///protein binding///translation initiation factor activity///translation initiation factor activity

GO.Process

1 RNA splicing///nuclear mRNA splicing, via spliceosome///nuclear mRNA splicing, via spliceosome///response to stimulus///visual perception

2 positive regulation of cell proliferation

3 translational elongation

4 translation///translational elongation

5 RNA metabolic process///cell cycle arrest///cell death///regulation of translational initiation

GO.Component

1 nuclear speck///nucleus///snRNP U5///spliceosome

2 cytoplasm///plasma membrane

3 cytosol///cytosolic large ribosomal subunit///intracellular///nucleolus///ribosome

4 cytosol///cytosolic large ribosomal subunit///intracellular///ribosome

5 eukaryotic translation initiation factor 4F complex

GO.Function.1

1 GO:0003723///GO:0031202///GO:0005515

2 GO:0005509///GO:0004198///GO:0005515

3 GO:0003729///GO:0005515///GO:0003735

4 GO:0003723///GO:0005515///GO:0003735///GO:0003735

15

5 GO:0005515///GO:0005515///GO:0003743///GO:0003743

GO.Process.1

1 GO:0008380///GO:0000398///GO:0000398///GO:0050896///GO:0007601

2 GO:0008284

3 GO:0006414

4 GO:0006412///GO:0006414

5 GO:0016070///GO:0007050///GO:0008219///GO:0006446

GO.Component.1

1 GO:0016607///GO:0005634///GO:0005682///GO:0005681

2 GO:0005737///GO:0005886

3 GO:0005829///GO:0022625///GO:0005622///GO:0005730///GO:0005840

4 GO:0005829///GO:0022625///GO:0005622///GO:0005840

5 GO:0016281

22640 more rows ...

$notes

$channel_count

[1] "1"

$dataset_id

[1] "GDS507" "GDS507" "GDS507" "GDS507" "GDS507" "GDS507" "GDS507" "GDS507"

[9] "GDS507" "GDS507" "GDS507" "GDS507"

$description

[1] "Investigation into mechanisms of renal clear cell carcinogenesis (RCC). Comparison of renal clear cell tumor tissue and adjacent normal tissue isolated from the same surgical samples."

[2] "RCC"

[3] "normal"

[4] "035"

[5] "023"

[6] "001"

[7] "005"

[8] "011"

[9] "032"

[10] "1"

[11] "2"

[12] "3"

[13] "4"

$email

[1] "geo@ncbi.nlm.nih.gov"

$feature_count

16

[1] "22645"

$institute

[1] "NCBI NLM NIH"

$name

[1] "Gene Expression Omnibus (GEO)"

$order

[1] "none"

$platform

[1] "GPL97"

$platform_organism

[1] "Homo sapiens"

$platform_technology_type

[1] "in situ oligonucleotide"

$pubmed_id

[1] "14641932"

$ref

[1] "Nucleic Acids Res. 2005 Jan 1;33 Database Issue:D562-6"

$reference_series

[1] "GSE781"

$sample_count

[1] "17"

$sample_id

[1] "GSM11815,GSM11832,GSM12069,GSM12083,GSM12101,GSM12106,GSM12274,GSM12299,GSM12412"

[2] "GSM11810,GSM11827,GSM12078,GSM12099,GSM12269,GSM12287,GSM12301,GSM12448"

[3] "GSM11810,GSM11815"

[4] "GSM11827,GSM11832"

[5] "GSM12069,GSM12078"

[6] "GSM12083,GSM12099"

[7] "GSM12101"

[8] "GSM12106"

[9] "GSM12269"

17

[10] "GSM12274,GSM12287"

[11] "GSM12299,GSM12301"

[12] "GSM12412,GSM12448"

$sample_organism

[1] "Homo sapiens"

$sample_type

[1] "RNA"

$title

[1] "Renal clear cell carcinoma (HG-U133B)"

$type

[1] "gene expression array-based" "disease state"

[3] "disease state" "individual"

[5] "individual" "individual"

[7] "individual" "individual"

[9] "individual" "individual"

[11] "individual" "individual"

[13] "individual"

$update_date

[1] "Mar 04 2004"

$value_type

[1] "count"

$web_link

[1] "http://www.ncbi.nlm.nih.gov/projects/geo"

Now, MA is of class MAList and contains not only the data, but the sample information
and gene information associated with GDS507.

2.2.4 Converting GSE to an ExpressionSet

First, make sure that using the method described above in the section “Getting GSE Series
Matrix files as an ExpressionSet” for using GSE Series Matrix files is not sufficient for the
task, as it is much faster and simpler. If it is not (i.e., other columns from each GSM are
needed), then this method will be needed.

Converting a GSE object to an ExpressionSet object currently takes a bit of R data
manipulation due to the varied data that can be stored in a GSE and the underlying GSM
and GPL objects. However, using a simple example will hopefully be illustrative of the

18

technique.
First, we need to make sure that all of the GSMs are from the same platform:

> gsmplatforms <- lapply(GSMList(gse),function(x) {Meta(x)$platform})

> gsmplatforms

$GSM11805

[1] "GPL96"

$GSM11810

[1] "GPL97"

$GSM11814

[1] "GPL96"

$GSM11815

[1] "GPL97"

$GSM11823

[1] "GPL96"

$GSM11827

[1] "GPL97"

$GSM11830

[1] "GPL96"

$GSM11832

[1] "GPL97"

$GSM12067

[1] "GPL96"

$GSM12069

[1] "GPL97"

$GSM12075

[1] "GPL96"

$GSM12078

[1] "GPL97"

$GSM12079

19

[1] "GPL96"

$GSM12083

[1] "GPL97"

$GSM12098

[1] "GPL96"

$GSM12099

[1] "GPL97"

$GSM12100

[1] "GPL96"

$GSM12101

[1] "GPL97"

$GSM12105

[1] "GPL96"

$GSM12106

[1] "GPL97"

$GSM12268

[1] "GPL96"

$GSM12269

[1] "GPL97"

$GSM12270

[1] "GPL96"

$GSM12274

[1] "GPL97"

$GSM12283

[1] "GPL96"

$GSM12287

[1] "GPL97"

$GSM12298

20

[1] "GPL96"

$GSM12299

[1] "GPL97"

$GSM12300

[1] "GPL96"

$GSM12301

[1] "GPL97"

$GSM12399

[1] "GPL96"

$GSM12412

[1] "GPL97"

$GSM12444

[1] "GPL96"

$GSM12448

[1] "GPL97"

Indeed, they all used GPL5 as their platform (which we could have determined by looking
at the GPLList for gse, which shows only one GPL for this particular GSE.). So, now we
would like to know what column represents the data that we would like to extract. Looking
at the first few rows of the Table of a single GSM will likely give us an idea (and by the
way, GEO uses a convention that the column that contains the single “measurement” for
each array is called the “VALUE” column, which we could use if we don’t know what other
column is most relevant).

> Table(GSMList(gse)[[1]])[1:5,]

ID_REF VALUE ABS_CALL

1 AFFX-BioB-5_at 953.9 P

2 AFFX-BioB-M_at 2982.8 P

3 AFFX-BioB-3_at 1657.9 P

4 AFFX-BioC-5_at 2652.7 P

5 AFFX-BioC-3_at 2019.5 P

> # and get the column descriptions

> Columns(GSMList(gse)[[1]])[1:5,]

21

Column

1 ID_REF

2 VALUE

3 ABS_CALL

NA <NA>

NA.1 <NA>

Description

1

2 MAS 5.0 Statistical Algorithm (mean scaled to 500)

3 MAS 5.0 Absent, Marginal, Present call with Alpha1 = 0.05, Alpha2 = 0.065

NA <NA>

NA.1 <NA>

We will indeed use the “VALUE” column. We then want to make a matrix of these values
like so:

> # get the probeset ordering

> probesets <- Table(GPLList(gse)[[1]])$ID

> # make the data matrix from the VALUE columns from each GSM

> # being careful to match the order of the probesets in the platform

> # with those in the GSMs

> data.matrix <- do.call('cbind',lapply(GSMList(gse),function(x)
+ {tab <- Table(x)

+ mymatch <- match(probesets,tab$ID_REF)

+ return(tab$VALUE[mymatch])

+ }))

> data.matrix <- apply(data.matrix,2,function(x) {as.numeric(as.character(x))})

> data.matrix <- log2(data.matrix)

> data.matrix[1:5,]

GSM11805 GSM11810 GSM11814 GSM11815 GSM11823 GSM11827 GSM11830

[1,] 10.926963 NA 11.105254 NA 11.275019 NA 11.438636

[2,] 5.749534 NA 7.908092 NA 7.093814 NA 7.514122

[3,] 7.066089 NA 7.750205 NA 7.244126 NA 7.962896

[4,] 12.660353 NA 12.479755 NA 12.215897 NA 11.458355

[5,] 6.195741 NA 6.061776 NA 6.565293 NA 6.583459

GSM11832 GSM12067 GSM12069 GSM12075 GSM12078 GSM12079 GSM12083

[1,] NA 11.424376 NA 11.222795 NA 11.469845 NA

[2,] NA 7.901470 NA 6.407693 NA 5.165912 NA

[3,] NA 7.337176 NA 6.569856 NA 7.477354 NA

[4,] NA 11.397568 NA 12.529870 NA 12.240046 NA

[5,] NA 6.877744 NA 6.652486 NA 3.981853 NA

GSM12098 GSM12099 GSM12100 GSM12101 GSM12105 GSM12106 GSM12268

22

[1,] 10.823367 NA 10.835971 NA 10.810893 NA 11.062653

[2,] 6.556123 NA 8.207014 NA 6.816344 NA 6.563768

[3,] 7.708739 NA 7.428779 NA 7.754888 NA 7.126188

[4,] 12.336534 NA 11.762839 NA 11.237509 NA 12.412490

[5,] 5.501439 NA 6.247928 NA 6.017922 NA 6.525129

GSM12269 GSM12270 GSM12274 GSM12283 GSM12287 GSM12298 GSM12299

[1,] NA 10.323055 NA 11.181028 NA 11.566387 NA

[2,] NA 7.353147 NA 5.770829 NA 6.912889 NA

[3,] NA 8.742815 NA 7.339850 NA 7.602142 NA

[4,] NA 11.213408 NA 12.678380 NA 12.232901 NA

[5,] NA 6.683696 NA 5.918863 NA 5.837943 NA

GSM12300 GSM12301 GSM12399 GSM12412 GSM12444 GSM12448

[1,] 11.078151 NA 11.535178 NA 11.105450 NA

[2,] 4.812498 NA 7.471675 NA 7.488644 NA

[3,] 7.383704 NA 7.432959 NA 7.381110 NA

[4,] 12.090939 NA 11.421802 NA 12.172834 NA

[5,] 6.281698 NA 5.419539 NA 5.469235 NA

Note that we do a “match” to make sure that the values and the platform information
are in the same order. Finally, to make the ExpressionSet object:

> require(Biobase)

> # go through the necessary steps to make a compliant ExpressionSet

> rownames(data.matrix) <- probesets

> colnames(data.matrix) <- names(GSMList(gse))

> pdata <- data.frame(samples=names(GSMList(gse)))

> rownames(pdata) <- names(GSMList(gse))

> pheno <- as(pdata,"AnnotatedDataFrame")

> eset2 <- new('ExpressionSet',exprs=data.matrix,phenoData=pheno)
> eset2

ExpressionSet (storageMode: lockedEnvironment)

assayData: 22283 features, 34 samples

element names: exprs

protocolData: none

phenoData

sampleNames: GSM11805 GSM11810 ... GSM12448 (34 total)

varLabels: samples

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation:

23

So, using a combination of lapply on the GSMList, one can extract as many columns
of interest as necessary to build the data structure of choice. Because the GSM data from
the GEO website are fully downloaded and included in the GSE object, one can extract
foreground and background as well as quality for two-channel arrays, for example. Getting
array annotation is also a bit more complicated, but by replacing “platform” in the lapply
call to get platform information for each array, one can get other information associated with
each array.

2.3 Accessing Raw Data from GEO

NCBI GEO accepts (but has not always required) raw data such as .CEL files, .CDF files,
images, etc. Sometimes, it is useful to get quick access to such data. A single function,
getGEOSuppFiles, can take as an argument a GEO accession and will download all the raw
data associate with that accession. By default, the function will create a directory in the
current working directory to store the raw data for the chosen GEO accession. Combining
a simple sapply statement or other loop structure with getGEOSuppFiles makes for a very
simple way to get gobs of raw data quickly and easily without needing to know the specifics
of GEO raw data URLs.

As a simple example, download the supplemental file for the GEO sample, GSM3922.

> df = getGEOSuppFiles('GSM3922')

[1] "ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSM3nnn/GSM3922/"

The metadata information for the file is stored in the returned data.frame, df. In this
case, there is only one row, but there could be more than one row, so the returned data
frame can be useful.

> df

size

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 4039240

isdir

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz FALSE

mode

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 644

mtime

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 2011-08-12 08:31:38

ctime

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 2011-08-12 08:31:38

atime

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 2011-08-12 08:18:33

uid

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 501

24

gid

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz 20

uname

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz sdavis

grname

/Users/sdavis/Documents/git/publicDataTutorial/vignette/GSM3922/GSM3922.CEL.gz staff

2.4 Use Cases

GEOquery can be quite powerful for gathering a lot of data quickly. A few examples can be
useful to show how this might be done for data mining purposes.

2.4.1 Getting all Series Records for a Given Platform

For data mining purposes, it is sometimes useful to be able to pull all the GSE records
for a given platform. GEOquery makes this very easy, but a little bit of knowledge of the
GPL record is necessary to get started. The GPL record contains both the GSE and GSM
accessions that reference it. Some code is useful to illustrate the point:

> gpl97 <- getGEO('GPL97')
> Meta(gpl97)$title

[1] "[HG-U133B] Affymetrix Human Genome U133B Array"

> head(Meta(gpl97)$series_id)

[1] "GSE362" "GSE473" "GSE620" "GSE674" "GSE781" "GSE907"

> length(Meta(gpl97)$series_id)

[1] 124

> head(Meta(gpl97)$sample_id)

[1] "GSM3922" "GSM3924" "GSM3926" "GSM3928" "GSM3930" "GSM3932"

> length(Meta(gpl97)$sample_id)

[1] 5164

The code above loads the GPL97 record into R. The Meta method extracts a list of header
information from the GPL record. The “title” gives the human name of the platform. The
“series id” gives a vector of series ids. Note that there are more than 120 series associated
with this platform and more than 5100 samples. Code like the following could be used to
download all the samples or series. I show only the first 5 samples as an example:

> gsmids <- Meta(gpl97)$sample_id

> # Feel free to run the next two lines, but I leave them out

> # here to cut down on processing time

> # gsmlist <- sapply(gsmids[1:5],getGEO)

> # names(gsmlist)

25

2.4.2 Building a Selective NCBI GEO mirror

GEOquery has the ability to use a ”local repository” of NCBI GEO. Enabling this func-
tionality is very simple. Simply supply a destination directory to getGEO and any files that
GEOquery would normally get from NCBI via download will be taken from the destination
directory if available. In other words, GEOquery will use a simple caching system. If the
destination directory is used consistently, the result will be a local GEOquery mirror pop-
ulated with all previously-downloaded GEO records. An example is probably most useful
here:

> destdir = tempdir()

> # this will be downloaded

> x = getGEO('GDS507',destdir=destdir)

Since the GDS507 file is now on disk, why redownload?

> # this will NOT be downloaded

> # local copy will be used instead

> y = getGEO('GDS507',destdir=destdir)

2.5 GEOquery Summary

The GEOquery package provides a bridge to the vast array resources contained in the NCBI
GEO repositories. By maintaining the full richness of the GEO data rather than focusing on
getting only the “numbers”, it is possible to integrate GEO data into current Bioconductor
data structures and to perform analyses on that data quite quickly and easily. These tools
will hopefully open GEO data more fully to the array community at large.

3 The GEOmetadb Package

One difficulty in dealing with GEO is finding the microarray data that is of interest. As
part of the NCBI Entrez search system, GEO can be searched online via web pages or using
NCBI Eutils. However, the web search is not as full-featured as it could be, particularly
for programmatic access and data mining. NCBI Eutils offers another option for finding
data within the vast stores of GEO, but it is cumbersome to use, often requiring multiple
complicated Eutils calls to get at the relevant information. We have found it absolutely
critical to have ready access not just to the microarray data, but to the metadata describing
the microarray experiments. To this end we have created GEOmetadb.

3.1 Introduction

In this section, we present a high-level overview of GEOmetadb.

26

Figure 1: A graphical representation (sometimes called an Entity-Relationship Diagram) of
the relationships between the tables in the GEOmetadb SQLite database

3.1.1 What is GEOmetadb?

The GEOmetadb is an attempt to make querying the metadata describing microarray exper-
iments, platforms, and datasets both easier and more powerful. At the heart of GEOmetadb
is a SQLite database that stores nearly all the metadata associated with all GEO data types
including GEO samples (GSM), GEO platforms (GPL), GEO data series (GSE), and curated
GEO datasets (GDS), as well as the relationships between these data types. This database
is generated by our server by parsing all the records in GEO and needs to be downloaded
via a simple helper function to the user’s local machine before GEOmetadb is useful. Once
this is done, the entire GEO database is accessible with simple SQL-based queries. With the
GEOmetadb database, queries that are simply not possible using NCBI tools or web pages
are often quite simple. The relationships between the tables in the GEOmetadb SQLite
database can be seen in figure 1.

27

3.1.2 Conversion capabilities

A very typical problem for large-scale consumers of GEO data is to determine the relation-
ships between various GEO accession types. As examples, consider the following questions:

• What samples are associated with GEO platform“GPL96”, which represents the Affymetrix
hgu133a array?

• What GEO Series were performed using “GPL96”?

• What samples are in my favorite three GEO Series records?

• How many samples are associated with the ten most popular GEO platforms?

Because these types of questions are common, GEOmetadb contains the function geoConvert

that addresses these questions directly and efficiently.

3.1.3 What GEOmetadb is not

We have faithfully parsed and maintained in GEO when creating GEOmetadb. This means
that limitations inherent to GEO are also inherent in GEOmetadb. We have made no attempt
to curate, semantically recode, or otherwise“clean up”GEO; to do so would require significant
resources, which we do not have.

GEOmetadb does not contain any microarray data. For access to microarray data from
within R/Bioconductor, please look at the GEOquery package. In fact, we would expect that
many users will find that the combination of GEOmetadb and GEOquery is quite powerful.

3.2 Getting Started

Once GEOmetadb is installed (see the Bioconductor website for full installation instructions),
we are ready to begin.

3.2.1 Getting the GEOmetadb database

This package does not come with a pre-installed version of the database. This has the
advantage that the user will get the most up-to-date version of the database to start; the
database can be re-downloaded using the same command as often as desired. First, load the
library.

> library(GEOmetadb)

The download and uncompress steps are done automatically with a single command,
getSQLiteFile.

> if(!file.exists('GEOmetadb.sqlite')) {

+ getSQLiteFile()

+ }

28

The default storage location is in the current working directory and the default filename
is “GEOmetadb.sqlite”; it is best to leave the name unchanged unless there is a pressing
reason to change it.

The GEOmetadb SQLite file is rather large. To cut down on download time in the
class environment, I have included a version of the file in the publicDataTutorial package.
In practice, the file would be downloaded using the getSQLiteFile() function. To use the
database file from the package, one can do these couple of steps:

> geometadbfile = system.file('extdata/GEOmetadb.sqlite.gz',package='publicDataTutorial')
> gunzip(geometadbfile,

+ destname=file.path(getwd(),'GEOmetadb.sqlite'),
+ remove=FALSE,

+ overwrite=TRUE)

Since this SQLite file is of key importance in GEOmetadb, it is perhaps of some interest
to know some details about the file itself.

> file.info('GEOmetadb.sqlite')

size isdir mode

GEOmetadb.sqlite 1587592192 FALSE 644

mtime

GEOmetadb.sqlite 2011-08-12 08:32:15

ctime

GEOmetadb.sqlite 2011-08-12 08:32:15

atime uid gid uname

GEOmetadb.sqlite 2011-08-12 08:31:49 501 20 sdavis

grname

GEOmetadb.sqlite staff

Now, the SQLite file is available for connection. The standard DBI functionality as
implemented in RSQLite function dbConnect makes the connection to the database. The
dbDisconnect function disconnects the connection.

> con <- dbConnect(SQLite(),'GEOmetadb.sqlite')
> dbDisconnect(con)

[1] TRUE

The variable con is an RSQLite connection object.

29

3.2.2 A word about SQL

The Structured Query Language, or SQL, is a very powerful and standard way of working
with relational data. GEO is composed of several data types, all of which are related to
each other; in fact, NCBI uses a relational SQL database for metadata storage and querying.
SQL databases and SQL itself are designed specifically to work efficiently with just such data.
While the goal of many programming projects and programmers is to hide the details of SQL
from the user, we are of the opinion that such efforts may be counterproductive, particularly
with complex data and the need for ad hoc queries, both of which are characteristics with
GEO metadata. We have taken the view that exposing the power of SQL will enable users
to maximally utilize the vast data repository that is GEO. We understand that many users
are not accustomed to working with SQL and, therefore, have devoted a large section of the
vignette to working examples. Our goal is not to teach SQL, so a quick tutorial of SQL is
likely to be beneficial to those who have not used it before. Many such tutorials are available
online and can be completed in 30 minutes or less.

3.3 Examples

3.3.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the DBI and
RSQLite package documentation. We cover enough here only to be useful.

Again, we connect to the database.

> con <- dbConnect(SQLite(),'GEOmetadb.sqlite')

The dbListTables function lists all the tables in the SQLite database handled by the
connection object con.

> geo_tables <- dbListTables(con)

> geo_tables

[1] "gds" "gds_subset"

[3] "geoConvert" "geodb_column_desc"

[5] "gpl" "gse"

[7] "gse_gpl" "gse_gsm"

[9] "gsm" "metaInfo"

[11] "sMatrix"

There is also the dbListFields function that can list database fields associated with a
table.

> dbListFields(con,'gse')

30

[1] "ID" "title"

[3] "gse" "status"

[5] "submission_date" "last_update_date"

[7] "pubmed_id" "summary"

[9] "type" "contributor"

[11] "web_link" "overall_design"

[13] "repeats" "repeats_sample_list"

[15] "variable" "variable_description"

[17] "contact" "supplementary_file"

Sometimes it is useful to get the actual SQL schema associated with a table. As an
example of doing this and using an RSQLite shortcut function, sqliteQuickSQL, we can get
the table schema for the gpl table.

> sqliteQuickSQL(con,'PRAGMA TABLE_INFO(gpl)')

cid name type notnull dflt_value pk

1 0 ID REAL 0 <NA> 0

2 1 title TEXT 0 <NA> 0

3 2 gpl TEXT 0 <NA> 0

4 3 status TEXT 0 <NA> 0

5 4 submission_date TEXT 0 <NA> 0

6 5 last_update_date TEXT 0 <NA> 0

7 6 technology TEXT 0 <NA> 0

8 7 distribution TEXT 0 <NA> 0

9 8 organism TEXT 0 <NA> 0

10 9 manufacturer TEXT 0 <NA> 0

11 10 manufacture_protocol TEXT 0 <NA> 0

12 11 coating TEXT 0 <NA> 0

13 12 catalog_number TEXT 0 <NA> 0

14 13 support TEXT 0 <NA> 0

15 14 description TEXT 0 <NA> 0

16 15 web_link TEXT 0 <NA> 0

17 16 contact TEXT 0 <NA> 0

18 17 data_row_count REAL 0 <NA> 0

19 18 supplementary_file TEXT 0 <NA> 0

20 19 bioc_package TEXT 0 <NA> 0

3.3.2 Writing SQL queries and getting results

Select 5 records from the gse table and show the first 7 columns.

> rs <- dbGetQuery(con,'select * from gse limit 5')
> rs[,1:7]

31

ID

1 1

2 2

3 3

4 4

5 5

title

1 NHGRI_Melanoma_class

2 Cerebellar development

3 Renal Cell Carcinoma Differential Expression

4 Diurnal and Circadian-Regulated Genes in Arabidopsis

5 Global profile of germline gene expression in C. elegans

gse status submission_date

1 GSE1 Public on Jan 22 2001 2001-01-22

2 GSE2 Public on Apr 26 2001 2001-04-19

3 GSE3 Public on Jul 19 2001 2001-07-19

4 GSE4 Public on Jul 20 2001 2001-07-20

5 GSE5 Public on Jul 24 2001 2001-07-24

last_update_date pubmed_id

1 2005-05-29 10952317

2 2005-05-29 NA

3 2005-05-29 11691851

4 2005-05-29 11158533

5 2005-07-18 11030340

Get the GEO series accession and title from GEO series that were submitted by “Sean
Davis”. The “

> rs <- dbGetQuery(con,paste("select gse,title from gse where",

+ "contributor like '%Sean%Davis%'",sep=" "))

> rs

gse

1 GSE2553

2 GSE4406

3 GSE5357

4 GSE7376

5 GSE7882

6 GSE8486

7 GSE9328

8 GSE14543

9 GSE15621

10 GSE16087

11 GSE16088

32

12 GSE16091

13 GSE16102

14 GSE18544

15 GSE19063

16 GSE20016

17 GSE25164

18 GSE22520

19 GSE25127

title

1 NHGRI_Sarcoma_Baird

2 Gene expression profiling of CD4+ T-cells and GM6990 lymphoblastoid cell lines

3 NHGRI Menin ChIP-Chip

4 Detection of novel amplification units in prostate cancer

5 Gene Expression and Comparative Genomic Hybridization of Ductal Carcinoma In Situ of the Breast

6 Whole genome DNAse hypersensitivity in human CD4+ T-cells

7 ATF2 knockout in papillomas

8 A molecular function map of EwingâĂŹs Sarcoma

9 Acute Lymphocytic Leukemia versus associated xenografts

10 Gene expression profiles of canine osteosarcoma

11 Gene expression profiles of human osteosarcoma

12 Gene expression profiles of human osteosarcoma, set2

13 Gene expression profiles of canine and human osteosarcoma

14 Expression Profiling of a Mouse Xenograft Model of âĂIJTriple-NegativeâĂI Breast Cancer Brain Metastases With Vorinostat

15 Genome-wide map of PAX3-FKHR binding sites in rhabdomyosarcoma

16 Analyses of Human Brain Metastases of Breast Cancer Reveal the Association between HK2 Up-Regulation and Poor Prognosis

17 UV effects in mouse melanocytes

18 Mouse Models of Alveolar/Embryonal Rhabdomyosarcoma & Spindle Cell Sarcomas

19 Ewing Sarcoma cell lines treated with mithramycin

As another example, GEOmetadb can find all samples on GPL96 (Affymetrix hgu133a)
that have .CEL files available for download.

> rs <- dbGetQuery(con,paste("select gsm,supplementary_file",

+ "from gsm where gpl='GPL96'",
+ "and supplementary_file like '%CEL.gz'"))
> dim(rs)

[1] 18910 2

But why limit to only GPL96? Why not look for all Affymetrix arrays that have .CEL
files? And list those with their associated GPL information, as well as the Bioconductor
annotation package name?

33

> rs <- dbGetQuery(con,paste("select gpl.bioc_package,gsm.gpl,",

+ "gsm,gsm.supplementary_file",

+ "from gsm join gpl on gsm.gpl=gpl.gpl",

+ "where gpl.manufacturer='Affymetrix'",
+ "and gsm.supplementary_file like '%CEL.gz' "))

> rs[1:5,]

bioc_package gpl gsm

1 hu6800 GPL80 GSM575

2 hu6800 GPL80 GSM576

3 hu6800 GPL80 GSM577

4 hu6800 GPL80 GSM578

5 hu6800 GPL80 GSM579

supplementary_file

1 ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM575/GSM575.cel.gz

2 ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM576/GSM576.cel.gz

3 ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM577/GSM577.cel.gz

4 ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM578/GSM578.cel.gz

5 ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM579/GSM579.cel.gz

Of course, we can combine programming and data access. A simple sapply example
shows how to query each of the tables for number of records.

> getTableCounts <- function(tableName,conn) {

+ sql <- sprintf("select count(*) from %s",tableName)

+ return(dbGetQuery(conn,sql)[1,1])

+ }

> do.call(rbind,sapply(geo_tables,getTableCounts,con,simplify=FALSE))

[,1]

gds 2721

gds_subset 15275

geoConvert 2722824

geodb_column_desc 104

gpl 9084

gse 23882

gse_gpl 30048

gse_gsm 691134

gsm 580708

metaInfo 2

sMatrix 27040

34

3.3.3 Conversion of GEO entity types

Large-scale consumers of GEO data might want to convert GEO entity type from one to
others, e.g. finding all GSM and GSE associated with ’GPL96’. Function goeConvert does
the conversion with a very fast mapping between entity types.

Covert ’GPL96’ to other possible types in the GEOmetadb.sqlite.

> conversion <- geoConvert('GPL96')

Check what GEO types and how many entities in each type in the conversion.

> lapply(conversion, dim)

$gse

[1] 859 2

$gsm

[1] 28220 2

$gds

[1] 325 2

$sMatrix

[1] 856 2

> conversion$gse[1:5,]

from_acc to_acc

1 GPL96 GSE1000

2 GPL96 GSE10024

3 GPL96 GSE10043

4 GPL96 GSE10072

5 GPL96 GSE10089

> conversion$gsm[1:5,]

from_acc to_acc

1 GPL96 GSM100386

2 GPL96 GSM100454

3 GPL96 GSM100455

4 GPL96 GSM100456

5 GPL96 GSM100457

> conversion$gds[1:5,]

35

from_acc to_acc

1 GPL96 GDS1023

2 GPL96 GDS1036

3 GPL96 GDS1050

4 GPL96 GDS1062

5 GPL96 GDS1063

> conversion$sMatrix[1:5,]

from_acc to_acc

1 GPL96 GSE1000_series_matrix.txt.gz

2 GPL96 GSE10024_series_matrix.txt.gz

3 GPL96 GSE10043_series_matrix.txt.gz

4 GPL96 GSE10072_series_matrix.txt.gz

5 GPL96 GSE10089_series_matrix.txt.gz

3.3.4 Mappings between GPL and Bioconductor microarry annotation packages

The function getBiocPlatformMap is to get GPL information of a given list of Bioconductor
microarry annotation packages. Note currently the GEOmetadb does not contains all the
mappings, but we are trying to construct a relative complete list.

Get GPL information of ’hgu133a’ and ’hgu95av2’:

> getBiocPlatformMap(con, bioc=c('hgu133a','hgu95av2'))

title gpl

1 [HG-U133A] Affymetrix Human Genome U133A Array GPL96

2 [HG_U95A] Affymetrix Human Genome U95A Array GPL91

bioc_package manufacturer organism

1 hgu133a Affymetrix Homo sapiens

2 hgu95av2 Affymetrix Homo sapiens

data_row_count

1 22283

2 12626

3.3.5 More advanced queries

Now, for something a bit more complicated, we would like to find all the human breast
cancer-related Affymetrix gene expression GEO series.

> sql <- paste("SELECT DISTINCT gse.title,gse.gse",

+ "FROM",

+ " gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm",

+ " JOIN gse ON gse_gsm.gse=gse.gse",

36

+ " JOIN gse_gpl ON gse_gpl.gse=gse.gse",

+ " JOIN gpl ON gse_gpl.gpl=gpl.gpl",

+ "WHERE",

+ " gsm.molecule_ch1 like '%total RNA%' AND",

+ " gse.title LIKE '%breast cancer%' AND",

+ " gpl.organism LIKE '%Homo sapiens%'",sep=" ")

> rs <- dbGetQuery(con,sql)

> dim(rs)

[1] 285 2

> print(rs[1:5,],right=FALSE)

title

1 A Modular Analysis of Breast Cancer Reveals a Novel Low-Grade Molecular Signature in Estrogen Receptor-Positive Tumors

2 A Phase II Study of Neoadjuvant Gemcitabine Plus Doxorubicin Followed by Gemcitabine Plus Cisplatin in Breast Cancer

3 A Supervised Risk Predictor of Breast Cancer Based on Biological Subtypes

4 A functional and regulatory network associated with PIP expression in human breast cancer

5 A gene expression signature identifies two prognostic subgroups of basal breast cancer

gse

1 GSE2294

2 GSE8465

3 GSE10886

4 GSE11627

5 GSE21653

Finally, it is probably a good idea to close the connection, please see DBI for detail.

> dbDisconnect(con)

[1] TRUE

If you want to remove old GEOmetadb.sqlite file before retrieve a new version from the
server, execute the following codes:

> file.remove('GEOmetadb.sqlite')

4 Introduction to SRA and the SRAdb Package

High throughput sequencing technologies have very rapidly become standard tools in biology.
The data that these machines generate are large, extremely rich. As such, the Sequence
Read Archives (SRA) have been set up at NCBI in the United States, EMBL in Europe,
and DDBJ in Japan to capture these data in public repositories in much the same spirit as
MIAME-compliant microarray databases like NCBI GEO and EBI ArrayExpress.

37

Accessing data in SRA requires finding it first. This R package provides a convenient and
powerful framework to do just that. In addition, SRAdb features functionality to determine
availability of sequence files and to download files of interest.

SRA does not currently store aligned reads or any other processed data that might rely
on alignment to a reference genome. However, NCBI GEO does often contain aligned reads
for sequencing experiments and the SRAdb package can help to provide links to these data
as well. In combination with the GEOmetadb and GEOquery packages, these data are also,
then, accessible.

4.1 Preliminaries

Since SRA is a continuously growing repository, the SRAdb SQLite file is updated regularly.
After loading the SRAdb package:

> library(SRAdb)

The first step, then, is to get the SRAdb SQLite file from the online location. The down-
load and uncompress steps are done automatically with a single command, getSRAdbFile.

> # do not do this in a class environment as network

> # bandwidth is limited

> sqlfile <- getSRAdbFile()

The SRAdb SQLite file is rather large. To cut down on download time in the class envi-
ronment, I have included a version of the file in the publicDataTutorial package. In practice,
the file would be downloaded using the getSRAdbFile() function. To use the database file
from the package, one can do these couple of steps:

> sradbfile = system.file('extdata/SRAmetadb.sqlite.gz',package='publicDataTutorial')
> gunzip(sradbfile,

+ destname=file.path(getwd(),'SRAmetadb.sqlite'),
+ remove=FALSE,

+ overwrite=TRUE)

The default storage location is in the current working directory and the default filename
is “SRAmetadb.sqlite”; it is best to leave the name unchanged unless there is a pressing
reason to change it. Since this SQLite file is of key importance in SRAdb, it is perhaps of
some interest to know some details about the file itself.

> file.info('SRAmetadb.sqlite')

size isdir mode

SRAmetadb.sqlite 704583680 FALSE 644

mtime

38

SRAmetadb.sqlite 2011-08-12 08:34:54

ctime

SRAmetadb.sqlite 2011-08-12 08:34:54

atime uid gid uname

SRAmetadb.sqlite 2011-08-12 08:18:56 501 20 sdavis

grname

SRAmetadb.sqlite staff

Then, create a connection for later queries. The standard DBI functionality as im-
plemented in RSQLite function dbConnect makes the connection to the database. The
dbDisconnect function disconnects the connection.

> #open connection

> sra_con <- dbConnect(SQLite(),'SRAmetadb.sqlite')
> sra_con

<SQLiteConnection: DBI CON (8033, 3)>

For further details, at this time see help(’SRAdb-package’).

4.2 Using the SRAdb package

4.2.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the DBI and
RSQLite package documentation. We cover enough here only to be useful. The dbListTa-

bles function lists all the tables in the SQLite database handled by the connection object
sra_con created in the previous section.

> sra_tables <- dbListTables(sra_con)

> sra_tables

[1] "col_desc" "data_block"

[3] "experiment" "metaInfo"

[5] "run" "sample"

[7] "sra" "sra_ft"

[9] "sra_ft_content" "sra_ft_segdir"

[11] "sra_ft_segments" "study"

[13] "submission"

There is also the dbListFields function that can list database fields associated with a
table.

> dbListFields(sra_con,'study')

39

[1] "study_ID" "study_alias"

[3] "study_accession" "study_title"

[5] "study_type" "study_abstract"

[7] "center_name" "center_project_name"

[9] "project_id" "study_description"

[11] "study_url_link" "study_entrez_link"

[13] "study_attribute" "submission_accession"

[15] "sradb_updated"

Sometimes it is useful to get the actual SQL schema associated with a table. As an
example of doing this and using an RSQLite shortcut function, sqliteQuickSQL, we can get
the table schema for the study table.

> sqliteQuickSQL(sra_con,'PRAGMA TABLE_INFO(study)')

cid name type notnull dflt_value

1 0 study_ID REAL 0 <NA>

2 1 study_alias TEXT 0 <NA>

3 2 study_accession TEXT 0 <NA>

4 3 study_title TEXT 0 <NA>

5 4 study_type TEXT 0 <NA>

6 5 study_abstract TEXT 0 <NA>

7 6 center_name TEXT 0 <NA>

8 7 center_project_name TEXT 0 <NA>

9 8 project_id INTEGER 0 <NA>

10 9 study_description TEXT 0 <NA>

11 10 study_url_link TEXT 0 <NA>

12 11 study_entrez_link TEXT 0 <NA>

13 12 study_attribute TEXT 0 <NA>

14 13 submission_accession TEXT 0 <NA>

15 14 sradb_updated TEXT 0 <NA>

pk

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

40

13 0

14 0

15 0

4.2.2 Writing SQL queries and getting results

Select 3 records from the study table and show the first 5 columns:

> rs <- dbGetQuery(sra_con,'select * from study limit 3')
> rs[,1:5]

study_ID study_alias study_accession

1 1 Natto BEST195 DRP000001

2 2 Resequence B. subtilis 168 DRP000002

3 3 KU_MeDIPseq_2009 DRP000030

study_title

1 Whole genome sequencing of Bacillus subtilis subsp. natto BEST195

2 Whole genome resequencing of Bacillus subtilis subsp. subtilis str. 168

3 Whole-genome DNA methylation analysis in human breast cancer cell lines using MeDIP-seq

study_type

1 Whole Genome Sequencing

2 Whole Genome Sequencing

3 Epigenetics

Get the SRA study accessions and titles from SRA study that study type contains “Tran-
scriptome”. The “%” sign is used in combination with the “like” operator to do a “wildcard”
search for the term “Transcriptome” with any number of characters after it.

> rs <- dbGetQuery(sra_con,paste("select study_accession,study_title from study where",

+ "study_description like 'Transcriptome%'",sep=" "))

> rs[1:3,]

study_accession

1 SRP000568

2 SRP000714

3 SRP001122

study_title

1 Highly integrated epigenome maps in Arabidopsis - transcriptome sequencing

2 A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome - Chip-Seq component

3 A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome - RNA-Seq component

Of course, we can combine programming and data access. A simple sapply example
shows how to query each of the tables for number of records.

41

> getTableCounts <- function(tableName,conn) {

+ sql <- sprintf("select count(*) from %s",tableName)

+ return(dbGetQuery(conn,sql)[1,1])

+ }

> do.call(rbind,sapply(sra_tables,getTableCounts,sra_con,simplify=FALSE))

[,1]

col_desc 102

data_block 4745

experiment 31637

metaInfo 2

run 77607

sample 108296

sra 82998

sra_ft 82998

sra_ft_content 82998

sra_ft_segdir 21

sra_ft_segments 37677

study 3824

submission 25188

4.2.3 Finding Relationships Between SRA Entities

Large-scale consumers of SRA data might want to convert SRA entity type from one to
others, e.g. finding all experiment accessions (SRX, ERX or DRX) and run accessions (SRR,
ERR or DRR) associated with ’SRP001007’. Function sraConvert does the conversion with
a very fast mapping between entity types.

Covert ’SRP001007’ to other possible types in the SRAmetadb.sqlite.

> conversion <- sraConvert(c('SRP001007','SRP000931'), sra_con= sra_con)

> conversion[1:3,]

study submission sample experiment run

1 SRP000931 SRA009053 SRS003453 SRX006122 SRR018256

2 SRP000931 SRA009053 SRS003453 SRX006129 SRR018263

3 SRP000931 SRA009053 SRS003453 SRX006130 SRR018264

Check what SRA types and how many entities in each type in the conversion.

> apply(conversion, 2, unique)

$study

[1] "SRP000931" "SRP001007"

42

$submission

[1] "SRA009053" "SRA009276"

$sample

[1] "SRS003453" "SRS003454" "SRS003455" "SRS003456"

[5] "SRS003457" "SRS003458" "SRS003459" "SRS003460"

[9] "SRS003461" "SRS003462" "SRS003463" "SRS003464"

[13] "SRS004650"

$experiment

[1] "SRX006122" "SRX006129" "SRX006130" "SRX006123"

[5] "SRX006124" "SRX006125" "SRX006126" "SRX006127"

[9] "SRX006128" "SRX006131" "SRX006132" "SRX006133"

[13] "SRX006134" "SRX006135" "SRX007396"

$run

[1] "SRR018256" "SRR018263" "SRR018264" "SRR018257"

[5] "SRR018258" "SRR018259" "SRR018260" "SRR018261"

[9] "SRR018262" "SRR018265" "SRR018266" "SRR018267"

[13] "SRR018268" "SRR018269" "SRR020739" "SRR020740"

4.2.4 Full text search

Searching by regular table and field specific SQL commands can be very powerful and if
you are familiar with SQL language and the table structure. If not, SQLite has a very
handy module called Full text search (fts3), which allow users to do Google like search with
terms and operators. The function getSRA does Full text search against all fields in a fts3
table with terms constructed with the Standard Query Syntax and Enhanced Query Syntax.
Please see http://www.sqlite.org/fts3.html for detail.

Find all run and study combined records in which any given fields has ’breast’ and ’cancer’
words, including ’breast’ and ’cancer’ are not next to each other:

> rs <- getSRA (search_terms ='breast cancer', out_types=c('run','study'), sra_con=sra_con)

> dim(rs)

[1] 225 22

If you only wants records containing exact phrase of ’breast cancer’, in which ’breast’ and
’cancer’ have other characters between other than a space:

> rs <- getSRA (search_terms ='"breast cancer"', out_types=c('run','study'), sra_con=sra_con)

> dim(rs)

[1] 182 22

43

Find all sample records containing words of either ’MCF7’ or ’MCF-7’:

> rs <- getSRA (search_terms ='MCF7 OR "MCF-7"', out_types=c('sample'), sra_con=sra_con)

> dim(rs)

[1] 107 10

Find all submissions by GEO:

> rs <- getSRA (search_terms ='submission_center: GEO', out_types=c('submission'), sra_con=sra_con)

> dim(rs)

[1] 527 7

Find study records containing a word beginning with ’Carcino’:

> rs <- getSRA (search_terms ='Carcino*', out_types=c('study'), sra_con=sra_con)

> dim(rs)

[1] 24 12

4.2.5 Get SRA or SRA-lite Data File Information

List sra-lite data file names including ftp addresses associated with ”SRX000122”:

> listSRAfile ("SRX000122", sra_con=sra_con, sraType='litesra')

experiment

1 SRX000122

2 SRX000122

3 SRX000122

4 SRX000122

5 SRX000122

6 SRX000122

sra

1 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000648/SRR000648.lite.sra

2 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000649/SRR000649.lite.sra

3 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000650/SRR000650.lite.sra

4 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000655/SRR000655.lite.sra

5 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000657/SRR000657.lite.sra

6 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000658/SRR000658.lite.sra

The above function does not check file availability, size and date of the sra or sra-lite
data files on the server, but the function getSRAinfo does this, which is good to know if you
are preparing to download them:

44

> rs <- getSRAinfo (in_acc=c("SRX000122"), sra_con=sra_con)

> rs[1:3,]

sra

1 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000648/SRR000648.lite.sra

2 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000649/SRR000649.lite.sra

3 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/litesra/SRX/SRX000/SRX000122/SRR000650/SRR000650.lite.sra

experiment size(KB) date

1 SRX000122 104 Apr 7

2 SRX000122 50536 Apr 7

3 SRX000122 319 Apr 7

Next you might want to download sra or sra-lite data files from the ftp site. The
getSRAfile function will download all available sra or sra-lite data files associated with
”SRR000648” and ”SRR000657” from NCBI SRA ftp site to a new folder in current directory:

> getSRAfile (in_acc=c("SRR000648","SRR000657"), sra_con=sra_con, destdir=getwd(), sraType='litesra')

4.3 Interactive Views of Sequence Data

This section assumes that the Integrated Genome Browser (IGV) from the Broad Institute
is installed and runs correctly.

Working with sequence data is often best done interactively in a genome browser, a task
not easily done from R itself. We have found the Integrative Genomics Viewer (IGV) a
high-performance visualization tool for interactive exploration of large, integrated datasets,
increasing usefully for visualizing sequence alignments. In SRAdb, functions startIGV,
load2IGV and load2newIGV provide convenient functionality for R to interact with IGV.
Note that for some OS, these functions might not work or work well.

Launch IGV with 2 GB maximum usable memory support:

> startIGV("mm")

IGV offers a remte control port that allows R to communicate with IGV. The current
command set is fairly limited, but it does allow for some IGV operations to be performed in
the R console. To utilize this functionality, be sure that IGV is set to allow communication via
the “enable port” option in IGV preferences. To load BAM files to IGV and then manipulate
the window:

> exampleBams = file.path(system.file('extdata',package='SRAdb'),
+ dir(system.file('extdata',package='SRAdb'),pattern='bam$'))
> sock <- IGVsocket()

> IGVgenome(sock, 'hg18')
> IGVload(sock, exampleBams)

> IGVgoto(sock, 'chr1:1-1000')
> IGVsnapshot(sock)

45

After doing so, you should find a PNG file in the IGV snapshot directory with filename:
chr1 1 1,000.png.

4.4 Graphical View of SRA Entity Relationships

Due to the nature of SRA data and its design, sometimes it is hard to get a whole picture
of the relationship between a set of SRA entities. For example, how many lanes of a given
sample were sequenced? In a large study, how is the sequencing of various samples related
to several studies? The functions entityGraph and sraGraph in this package generate
graphNEL objects with edgemode=’directed’ from input data.frame or directly from search
terms, and then the plot function can easily draw a graph.

Create a graphNEL object from SRA accessions, which are full text search results of
terms ’colon cancer’

> library(Rgraphviz)

> acc <- getSRA (search_terms ='colon cancer', out_types=c('sra'), sra_con=sra_con, acc_only=TRUE)

> g <- entityGraph(acc)

> attrs <- getDefaultAttrs(list(node=list(fillcolor='lightblue', shape='ellipse')))
> plot(g, attrs= attrs)

46

SRA010347 SRA012054

SRP001592 SRP002018

SRS009603 SRS011749

SRX015142 SRX017112

SRR032509 SRR032510 SRR038620

Create a graphNEL object directly from full text search results of terms ’colon cancer’

> g <- sraGraph('colon cancer', sra_con)

> attrs <- getDefaultAttrs(list(node=list(fillcolor='lightblue', shape='ellipse')))
> plot(g, attrs=attrs)

47

SRA010347 SRA012054

SRP001592 SRP002018

SRS009603 SRS011749

SRX015142 SRX017112

SRR032509 SRR032510 SRR038620

It’s considered good practise to explicitely disconnect from the database once we are done
with it:

> dbDisconnect(sra_con)

[1] TRUE

5 sessionInfo

• R Under development (unstable) (2011-08-01 r56587), x86_64-apple-darwin9.8.0

• Locale: en_US.utf-8/en_US.utf-8/en_US.utf-8/C/en_US.utf-8/en_US.utf-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: Biobase 2.13.7, bitops 1.0-4.1, DBI 0.2-5, GEOmetadb 1.13.0,
GEOquery 2.19.2, graph 1.31.1, limma 3.9.11, RCurl 1.6-6, Rgraphviz 1.31.1,
RSQLite 0.9-4, SRAdb 1.7.0

48

• Loaded via a namespace (and not attached): tools 2.14.0, XML 3.4-0

49

	Overview of the NCBI Gene Expression Omnibus (GEO)
	Platforms
	Samples
	Series
	Datasets

	Using GEOquery to Access NCBI GEO
	GEOquery Data Structures
	The GDS, GSM, and GPL classes
	The GSE class

	Converting to BioConductor ExpressionSets and limma MALists
	Getting GSE Series Matrix files as an ExpressionSet
	Converting GDS to an ExpressionSet
	Converting GDS to an MAList
	Converting GSE to an ExpressionSet

	Accessing Raw Data from GEO
	Use Cases
	Getting all Series Records for a Given Platform
	Building a Selective NCBI GEO mirror

	GEOquery Summary

	The GEOmetadb Package
	Introduction
	What is GEOmetadb?
	Conversion capabilities
	What GEOmetadb is not

	Getting Started
	Getting the GEOmetadb database
	A word about SQL

	Examples
	Interacting with the database
	Writing SQL queries and getting results
	Conversion of GEO entity types
	Mappings between GPL and Bioconductor microarry annotation packages
	More advanced queries

	Introduction to SRA and the SRAdb Package
	Preliminaries
	Using the SRAdb package
	Interacting with the database
	Writing SQL queries and getting results
	Finding Relationships Between SRA Entities
	Full text search
	Get SRA or SRA-lite Data File Information

	Interactive Views of Sequence Data
	Graphical View of SRA Entity Relationships

	sessionInfo

